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36 1 Introduction

37 An impact of global warming on continental drying results in falling water levels in
38 enclosed seas and lake systems [1]. Climate change led to rapidly warming lakes
39 around the world, threatening freshwater supplies and ecosystems. A study by
40 O’Reilly et al. [2] using more than 25 years of satellite temperature data and ground
41 measurements of 235 lakes found that lakes are warming an average of 0.34� each
42 decade. This warming rate is greater than the warming rate of either oceans or the
43 atmosphere, which in turn impacts local climates profoundly. In northern climates,
44 lakes are losing their ice cover earlier in the spring. In tropical lakes, warming might
45 have significant negative impacts on the ecosystem [2]. Endorheic lakes that do not
46 have an outflow are particularly sensitive to climatic change since their volumes
47 depend on a delicate balance between input water and evaporation [1]. Drastic
48 volume decrease will lead to an increase in the content of salts, change of chemical
49 compositions, formation of anoxia and hypersaline condition, and finally,
50 disappearing those lakes. The most favorable conditions for the formation of salt
51 lakes are niches in mountain ranges or high mountains, where there is no outflow, or
52 it is strictly limited and there is a negative balance between evaporation and
53 tributary. However, the inflow must be sufficient to maintain a relatively constant
54 reservoir.
55 In this study, we will have a closer look at Eurasian salt lakes, i.e., Lake Urmia,
56 Lake Issyk-Kul, the Aral Sea, and the Dead Sea (Fig. 1), which all are enclosed lakes
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57in an arid climate, and have different ion compositions compared with the oceanic
58ones. Except for Lake Issyk-Kul, all have a negative water balance and high salinity,
59which leads to massive brine release and minerals precipitation. This work aims to
60analyze the recent inter-annual changes of these lakes with specific emphasis on
61Lake Urmia. Here, we present the results of our research and literature data sepa-
62rately for each lake to trace the historical evolution of the salt composition of
63hypersaline Aral and Dead Seas, Lake Urmia, and the slightly salted Issyk-Kul Lake.

642 Data, Methods, and Equipment

65The datasets for this work were received during field expeditions to Lake Urmia, the
66Lake Issyk-Kul, the Aral Sea, and the Dead Sea performed in 2013–2019. The
67collected samples of Lake Urmia, Lake Issyk-Kul, the Aral Sea, and the Dead Sea
68waters were analyzed at Shirshov Institute of Oceanology, and samples of Lake
69Urmia analyzed in Asarab Consulting Engineers Company. A detailed description of

Fig. 1 Sampling area: The Issyk-Kul Lake, Aral Sea, Urmia Lake, and Dead Sea AU2(http://mapas.
owje.com/590_mapa-politico-del-suroeste-asiatico-2000.html)
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70 the methods is given in other chapters of this book [3]. We also used the published AU3

71 and achieved data for the interannual variability analyses.

72 3 Setting of Lake Urmia, Lake Issyk-Kul, the Aral Sea,
73 and the Dead Sea

74 Figure 1 shows the location of the studied water bodies: Lake Urmia, Lake Issyk-
75 Kul, the Aral Sea, and the Dead Sea. Lake Urmia is in Iran, the Dead Sea is in Israel,
76 Lake Issyk-Kul is in Kyrgyzstan, and the Aral Sea is divided by Kazakhstan and
77 Uzbekistan.

78 3.1 Lake Urmia

79 Lake Urmia is a shallow enclosed hypersaline lake located in the north-western part
80 of Iran. It is known as one of the largest continental salt lakes in the world. Lake
81 Urmia is an endorheic basin that retains water and does not allow any outflow. The
82 primary water sources are precipitation and freshwater discharge from several rivers
83 and springs and the principal water loss in Lake Urmia is evaporation. Recently, the
84 surface area and volume of the lake have been shrinking significantly (Fig. 2). It has
85 been shown that an increase in evaporation and decrease in rainfall and fluvial inflow
86 have led to salinization and water level decline [4–8]. In the worst case, if Lake
87 Urmia dries out, a vast salt desert will form, which is an undeniable threat to the local
88 ecosystem and will trigger a chain of drastic alterations in the regional ecosystem,
89 resulting in an ecological, agricultural, and social catastrophe, not only in the
90 Azerbaijan of Iran but also in neighboring countries such as Turkey, Azerbaijan,
91 Armenia, Georgia, and northern part of Iraq. It will force many people to abandon
92 their villages and towns around the lake and a vast majority of the flora and fauna
93 will be lost permanently [9].
94 Fluctuations in the lake level are usually controlled by the flow of surface and
95 groundwater, which recently practically does not reach the lake. Due to the periodic

Fig. 2 Lake Urmia level variation. Modified from [4]

E. V. Yakushev et al.



96shallowing and filling of the lake, its salt composition is constantly changing. Before
97the lake level began to drop rapidly (1995, see Fig. 2), the brine of Lake Urmia was
98classified as Na–K–Cl–Mg–SO4. In 2010, the ionic signature of Urmia brine was
99shifted to Na–K–SO4–Mg–Cl, and the total salinity at least doubled [10].

1003.2 Aral Sea

101The Aral Sea was one of the largest lakes on Earth and was an oasis in the middle of
102the desert that was fed by two large rivers, Amu-Darya and Syr-Darya. Due to the
103combined effect of climate change and the massive irrigation projects, the river flows
104into the Aral Sea decreased from more than 50 km3 per year to only a few cubic
105kilometers per year in the 1980s. In 1989, the sea surface sank to a level of about
10638 m [11], and for the first time, the lake split into two separate water bodies – the
107Small Aral in the north and the Large Aral in the south (Fig. 3). In 2003, the Large
108Aral Sea also split into two basins – the eastern and western [12–14]. By 2004, this
109lake has lost 75% of its surface and about 90% of its water [13], according to [15] –
11087.85% by 2018. To date, it has fallen by 56 m (Fig. 4). The consequences of the
111drying up of the Aral Sea were climate change in the region with an increase in
112continentality, a decline in the economy, fishing, a catastrophic decline in the
113biodiversity of the natural ecosystems of the sea itself, and sections of the river
114deltas.
115The area decrease of the Aral Sea has led to the formation of desert around the
116reservoir playa. The area of Central Asia playa is about 60,000 km2, in which the

Fig. 3 Map showing the remaining water bodies of the Aral Sea
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117 area of the playa of the Aral Sea share exceeds half of that. They contribute to the
118 emergence and intensification of dust and salt storms, which negatively affect the
119 ecology and health of the population of the region [11, 17–20]. The scale of dust
120 collection of the dried bottom of the Aral Sea is estimated by different authors from
121 15 to 75 million tons per year or more [21]. The residual lakes capture dust particles
122 to some extent and mitigate the negative impact of dust storms on the
123 environment [22].

124 3.3 Dead Sea

125 The Dead Sea is a deep terminal lake (length: ~80 km, width: ~17 km, depth:
126 <300 m) located about 416 m below the World Ocean level, which makes the
127 lake the lowest land spot on Earth [23]. Only Jordan river and groundwater flow into
128 the Dead Sea. The river inflow decreased from 1.5 km3year�1 in the 1950s to almost
129 0.15 km3year�1 in 2000. The lake used to consist of two basins. The large-deep
130 northern and the small-shallow southern parts were separated by a peninsula and
131 connected through a narrow strait. The southern basin dried completely by 1977,
132 except for the areas occupied by the evaporation ponds [24]. Mainly due to river
133 runoff, there was stable stratification in the Dead Sea, with salinity increasing from
134 about 300 g/l in the upper layer (about 40 m) to about 332 g L�1 at the bottom
135 [25]. Consequently, the lower layer was anoxic and sulfide-containing [23]. Follow-
136 ing an increase in anthropogenic drainage of river water and progress in drying,
137 vertical density stratification eventually weakened, leading to a major overturning
138 event in 1979 [26, 27]. Today condition of the sea is well-mixed. Since the middle of
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Fig. 4 Long-term changes of the Aral Sea surface level (meters above ocean level): (1) historical
data after [16]; (2) TOPEX/Poseidon satellite altimetry reconstruction (http://www-aviso.els.fr);
(3) direct geodesic measurements in the surveys of 2002–2004 [14]. Gray shading indicates gaps in
the data [13]
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139the twentieth century, the surface level of the Dead Sea has dropped about 21 m
140(Fig. 5). On average its level has decreased by 1 m per year. It is expected that the
141rate of volume reduction due to evaporation in the future will decrease due to an
142increase in the concentration of ions in the water [28]. Model predictions suggest that
143the Dead Sea level will continue to fall until equilibrium is reached [29]. Due to the
144expected decrease in evaporation following an increase in salinity during progressive
145desiccation and the high hygroscopicity of the Dead Sea’s solutes, the lake will never
146dry out completely, even if the river tributary is set to zero [30]. A significant factor
147in lowering the level of the lake is currently the industrial extraction of mineral salts.
148Its impact on the overall decline in the annual level is estimated at 30–40 cm. These
149industries consume 0.2–0.3 km3 of the Dead Sea volume per year, diverting a
150significant amount of water to the evaporation ponds and returning only part of the
151water to the saltier final brine [23]. Here halite completely precipitates, and the brine
152reaches such saturation when carnallite (KMgCl3 � 6 (H2O)) is used to produce
153potash.

1543.4 Lake Issyk Kul

155Issyk-Kul is a closed lake in the Northern Tien Shan in the northeastern part of
156Kyrgyzstan, one of the largest mountain lakes in the world. It is located at an altitude
157of 1,608 m above sea level. Glaciers are the source of many rivers in the Issyk-Kul
158basin and play an important role in the formation of the chemical composition of its
159waters [31]. A feature of the lake is the amazing homogeneity of water both in the
160water area and in-depth, as evidenced by the relative constancy of density, salinity,
161and chemical composition over more than 100 years. This was noted by early
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162 research and is being observed in modern times. The first results of hydrochemical
163 analysis of lake waters were obtained by V.P. Matveev in 1928. It is known that the
164 salinity of the lake at that time was 5.823 g kg�1. Even then, the lake had a relative
165 constancy of the salt composition.

166 4 Results

167 4.1 Lake Urmia Salt Composition Changes

168 Based on collected in 2014–2017 as well as previously published data [32, 33] we
169 analyzed the temporal variability of the chemical composition of Lake Urmia. We
170 merged these data into a database that contains averaged values and ranges of the
171 variability of parameters across the lake with a monthly resolution in time. Referring
172 to studies by [32], Lake Urmia is geochemically highly uniform both horizontally
173 and vertically. However, as we explain in this work, a question about vertical
174 structure remains open.
175 Figure 6 shows the variation of ions concentrations in Lake Urmia based on the
176 available historic data. As it is seen from these figures, the concentrations are
177 characterized by significantly different scales. The spatial and temporal variability,
178 unharmonized data collection, applying the different methodology, equipment, and
179 accuracy could lead to abrupt changes in the measured ionic concentration. As
180 shown in the figures, the concentrations of sodium increased from 60–100 g L�1

181 to 70–120 g L�1 in 2007–2011, then its concentrations started to decrease to
182 40–80 g L�1 in 2013. The magnesium and potassium concentrations were at low
183 concentrations before 2007 (5–10 and 1–3 g L�1 correspondingly) and then
184 increased to 10–60 g L�1 and 4–12 g L�1) in 2010–2014. Calcium content had an
185 opposite trend of a slight decrease of concentrations in 2010–2014 to 0.2–1.2 g L�1

186 from 0.4–1.5 g L�1 in 2005–2010. The typical concentrations of chloride changed
187 from 70–15 g L�1 in 1985–2005 to 10–25 g L�1 in 2005–2014 without a clear trend
188 in the last period. Concentrations of sulfate and bicarbonate were of a smaller level in
189 1982–2005 (10–20 g L�1 and 0.3–0.4 g L�1 correspondingly) and had a trend to
190 increase to 60–120 g L�1 and 1–4 g L�1 in 2013. Bromide concentrations were
191 AU4measured only in the 1980s (about 0.2 g L�1).
192 The measured values of nutrients (silicate, phosphate, and nitrate) for the 1970s–
193 1990s are in a reasonable range. Nutrient measurements after 2005 show very high
194 values, which probably can be related to the analytical technique applicability for
195 high salinity. A comparison between the Dead Sea and Lake Urmia values could be
196 illustrative. E.g., the nitrate and phosphate values in the Dead Sea are 0.5 mg L�1

197 and 35 μg L�1 [34], and 4,000 mg/L and>800 mg L�1 for Lake Urmia, respectively.
198 Concentrations of dissolved oxygen are below 3 mg L�1, which can be explained by
199 a low saturation value due to high salinity. pH values were majorly in the range from
200 7 to 8 through all the period of observations with a decrease to 5–7 in 2013. A single
201 observation on alkalinity (about 6 mEql�1) was recorded in 1985. Total dissolved
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Fig. 6 Inter-annual variability of the major cations, anions, nutrients AU5, dissolved oxygen, TDS, pH
and Alk in Lake Urmia. The gray vertical line marks out the winter periods. Data as average values
(horizontal ovals) or ranges (vertical color lines) are given for months where the expeditions were
reported AU6
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202 substances content increased from a typical value of 100–300 mg L�1 before 2007 to
203 300–500 mg L�1 after 2007 with a temporal increase to 400–600 mg L�1 in 2013.

204 4.2 Aral Sea Salt Composition Changes

205 The remaining water bodies (Fig. 7) from the historical Aral Sea developed their own
206 hydrological and physicochemical peculiarities, and none of them can be represen-
207 tative of generic Aral water. It is important to note that the physicochemical
208 properties of individual lakes representing the modern Aral Sea differ both between
209 lakes and within the same water body. The massive drying up of the sea caused an
210 increase in water salinity and a change in the ratios of the components of its chemical
211 composition [35, 36].

212 4.2.1 The Large Aral Sea

213 Comparing ionic composition for the Large Aral before 1960 and 2019 (Fig. 7, left)
214 reveals that the relative content of chlorine ions changed 1.5 times, sodium ions
215 �1.05 times, potassium �3.2 times, magnesium �1.5 times. The content of other

Fig. 7 Evolution of the major ionic composition of the Aral Seas: (a) large Aral Sea, (b) small
Aral Sea
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216components also altered as follows: sulfates �2 times, hydrocarbonate �5 times,
217calcium ions �7 times [37]. The lake water initially was in an intermediate position
218between marine sodium-chloride and continental hydrocarbonate-calcium water. In
2191952, the SO4/Cl mass ratio for the Large Aral Sea was about 0.9 [38], which
220decreased 2.6 times and averaged around 0.35.
221For the half-century drying phase of the Aral Sea, magnesium carbonates
222accounted for only 2% of the total precipitated salts [39]. The relative content of
223magnesium in the surface layer of the water of the Large Aral was stable for a long
224period. Almost the same trend was evident for potassium. Potassium and magnesium
225are the most conservative cations. Potassium salts are usually deposited in salt lakes
226and form Sylvite (KCl) in modern salt lakes by precipitation from residual brine in
227the upper layer of the salt deposit during the period of drying [40].
228During the last two decades, hydrogen sulfide and methane were detected con-
229secutively in 2014, 2017, and 2019 in the bottom layer of residual water bodies of
230the Aral Sea. The presence of hydrogen sulfide testifies to the anaerobic conditions in
231deep-sea waters. These conditions have a significant impact on the hydrochemical
232regime and geochemistry of waters. The thickness of the bottom oxygen-free layer in
233the western basin of the Large Aral varied over a wide range (from 15 to 35 m), and
234the values of H2S concentrations varied from 5 to 80 mg/L [36, 41–43]. Convection
235events, e.g., the deep winter convections that happened in 2003–2004 [39], can
236break up anaerobic conditions.

2374.2.2 The Small Aral Sea

238In the historical Aral Sea, salinity in the area of the modern Small Aral was around
23910–10.5 g kg�1 [38]. After drying and partitioning of the sea, the salinity of the
240Small Sea increased, e.g., it reached about 34 g/kg in the early 2000s [44]. Holding
241the flow of the Syr Darya River (constructing Kokaral dam in 2005) gradually
242returned salinity to its previous values. But the ion-salt composition changed
243significantly. From 1952 to 2019, the SO4/Cl mass ratio for the Small Aral increased
2441.5 times [37]. This trend seems paradoxical since in the process of chemical
245metamorphization the sulfate ion should primarily be consumed. Therefore, a
246decrease rather than an increase in the sulfate-chloride ratio should be expected.
247But, the Syr Darya River, which is characterized by a high content of sulfates,
248hydrocarbonate, and magnesium ions, profoundly affects the ionic composition of
249the chemical composition of the Small Aral Sea [44]. The amount of sulfate supplied
250with river waters is large enough and an increase in the relative sulfate ion content
251over time. The salinity and the ratio of the main ionic composition are relatively
252uniform along the water column (Fig. 7 right). In a temporal sense, comparing 2002 AU7

253(Friedrich et al. 2003) by 2019 reveals significant alteration ratios for the main ionic
254composition as follows: (SO4/Cl) 1.3 times, (HCO3/Cl) �1.6 times, (Ca/Cl) �1.8
255times, (Na/Cl) �1.2 times, (Ca/Mg) �1.8 times [37]. Based on our observations and
256results, it is highly likely the ionic composition of the Small Seawater will continue

How Climate Change and Human Interaction Alter Chemical Regime in Salt. . .



257 to change toward an increase in the concentration of ions prevailing in the river,
258 especially sulfates.

259 4.3 Dead Sea Salt Composition Changes

260 The Dead Sea waters were probably formed from seawater. The arid climate led to
261 the deposition of thick layers of minerals. Recirculation of the brain between the
262 surface and the ground has played an important role in the geochemistry of the Dead
263 Sea [45]. The salt composition of the Dead Sea water is rather peculiar and
264 significantly different from the composition of the Aral Sea and Lake Urmia. SO4/
265 Cl for the Dead Sea is smaller than that for the Aral Sea by a factor of about 450. The
266 Dead Sea water has a Ca-chloride type composition [13].
267 As in Lake Urmia and the Aral Sea, the precipitation of compounds from the
268 oversaturated water has played an important role in the chemical regime of the Dead
269 Sea. At present, the lake is saturated with halite NaCl, aragonite CaCO3, and
270 anhydrite CaSO4 [46]. In the course of the salinization, halite and gypsum
271 CaSO4�2H2O have precipitated massively [23, 27]. During the last few years, the
272 depletion of sulfate and bicarbonate due to low river inflow led to relatively small
273 precipitation of halite. Nonetheless, the precipitation of halite has already resulted in
274 a considerable change in the ion composition, in particular, the molar ratio NaCl has
275 decreased by about 20%, while the ratio Mg/K has increased by about 10% since the
276 1960s [23].
277 Figure 8 shows the evolution of the surface waters of the Dead Sea from 1977 to
278 2019. The IO RAS data we obtained in 2017, 2018, and 2019 are marked with black
279 markers. It should be noted that samples 2008–2019 were obtained in the deepest
280 part of the lake (EG 320 station). Salinity in this area was averaged 300 g kg�1. Data
281 of 2017 were obtained at the northernmost point of the lake in the Kalia region
282 [33]. Salinity in this area averaged 280 g kg�1 in 2017. A significant increase is
283 evident in sodium, potassium, and sulfates by 2019 on the surface in the deepest part
284 of the lake. The reason for the sharp change in the content of the main ions can be an
285 increase in salinity of more than 300 g kg�1 both as a result of an annual drop in sea
286 level and as a result of an intense discharge of highly mineralized return waters from
287 evaporation basins. Over the year of our observations, the relative content of
288 halogen-ions in the Dead Sea water composition decreased by an average of 0.5%,
289 and magnesium cations by 9%.
290 The ionic composition of the Dead Sea is unstable due to the precipitation of salts,
291 mainly NaCl, and the inflow of return water from the evaporation pools [28]. Resid-
292 ual water, the so-called final brine (about 50% of the volume used) returns to the
293 Dead Sea with a relatively high content Mg–Ca–Cl with salinity 470–500 g L�1 and
294 density 1.33–1.35 kg L�1.
295 The Dead Sea experienced deepening of the surface mixed layer from 12–15 m to
296 25–30 m from 1992 to 1995. This trend stopped from 1979 onward, and the lake
297 becomes holomictic with a relatively stable upper mixed layer with autumn and
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298winter convection mixing and ventilating the water column. There are some inter-
299mittent relatively short meromictic periods (1980–1981, 1992–1994), caused by
300rainy conditions and elevated river discharges, which always accompanied by a
301temporary rise of the lake surface level by 1–2 m and a surface salinity drop by up to
30230% [23]. In the holomictic regime, stable density stratification in summer is
303controlled by a thermocline where the temperature decreases from up to 36�C in
304and immediately below the mixed layer to only about 22�C at the bottom. The
305temperature drop in the vertical profile is sufficiently large to offset the upper layer
306salinity increase due to enhanced summer evaporation. In autumn, cooling leads to a
307relaxation of thermal stratification and an overturning of the water column [24]. The
308seasonal cycle of salinity and temperature has been modulated by a considerable
309general positive trend over the last decades [47, 48].
310The peculiarity of the carbonate system of the lake led to a significantly lower pH
311than in Lake Urmia and other lakes. In the water of the Dead Sea, there is practically
312no carbonate and hydrocarbonate alkalinity due to their precipitation in the form of
313aragonite (CaCO3) and mainly borate alkalinity is present [49]. The extremely high
314ionic strength of the brine and the predominance of magnesium ions also contribute
315to the low pH [50]. In 1977, a pH value of 6.4 was recorded from [25], 6.2 from in
3162002–5.9 [45], in 2018 and 2019, the pH at EG 320 ranged from 5.62 to 6.04. As a
317result, the pH value in the Dead Sea has not changed significantly over time and the
318slightly acidic reaction of the environment persists at present. However, the chemical

Fig. 8 The evolution of the main ionic composition of the Dead Sea waters in the period from 1977
to 2019. White rhombuses indicate historical values from literary sources 1977–2015 [25, 34, 45],
black rhombuses 2017–2019 [33, 37]
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319 composition of the brine and sediment suggests that aragonite continues to fall out of
320 the water, albeit at a slower rate than in the past. DIC (dissolved inorganic carbon) in
321 1993–1994 was averaged 0.86–0.87 mmol kg�1 [51] and 0.86 mmol kg�1 in
322 2012–2014 and total alkalinity was 3.826 mmol kg�1 and total boron 4.6 mmol kg�1

323 in 2012–2014 [50].

324 4.4 Issyk-Kul Salt Composition

325 The predominant ions of the Lake Issyk-Kul water are sulfates, chlorides, sodium,
326 and magnesium. Of the cations, Na and Mg predominate, and of the anions, Cl and
327 SO4. The predominance of sulfates determines the class of water in this lake.
328 Therefore, the water in the lake belongs to the sulfate class and chloride-sulfate-
329 sodium-magnesium type of mineralization. In coastal zones and bays, Na and Mg
330 prevail over cations and Cl prevails over anions. The pH ranges from 8.69 to 8.75.
331 Total alkalinity is mainly due to HCO3 and partly to CO3 ions. The concentration of
332 other ions affecting the alkalinity of water (H2BO3, HPO4

2�, H2PO
4�, HSiO3) is

333 very low [31]. Due to rather a good horizontal and vertical water circulation [52], the
334 main ions show a uniform distribution both horizontally and vertically (Fig. 9). This
335 characteristic distinguishes Lake Issyk-Kul from many other salt lakes. Topographic
336 features, particularly the underwater layers of paleo-rivers on the vast eastern shelf of
337 the lake, might play a role in the horizontal and vertical exchange in this lake
338 [53]. Figure 9a shows the depth distribution of the main ions in the water column
339 using the example of water samples obtained during the 2017 expedition.
340 Interannual changes in salinity are insignificant (Fig. 9b). Temporal variations in
341 river runoff practically do not affect the salinity distribution even in the upper layer.
342 Temperature data (obtained by IO RAS researchers in June 2016 and November
343 2017) show the temperature at 500 m depth is around 4.4�C, which is the same as the
344 year 2003. It seems that the significant 10-year warming of deep waters [54] is
345 already stopped. However, in deep waters (500 m), a slight positive salinity trend,
346 0.05 g kg�1 increasing since 1984, is observed. Our data show that the mineraliza-
347 tion rate of the bottom layer was 5.95 and 6.10 g kg�1, in the years 2015 and 2017,
348 respectively. According to historical data, the mineralization of the bottom layer was
349 6.11 and 6.02 g kg�1 in 1974 and 1984, respectively [31, 55]. Our data also show
350 that the average salinity was 5.85 and 5.91 g kg�1, in 2013 and 2017, respectively,
351 which in comparison with historical values, i.e., 5.99 g kg�1 in 1983–1984 [55] and
352 6.21 g kg�1 in 2015 [56] shows a steady trend. The lake water is alkaline and our
353 observations in 2014–2017 show the water pH is in the range of 7.95–8.82.
354 In general, there are no significant changes in the chemical composition of this
355 lake from 1935 (data from [31]) to the present (Fig. 9b).
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3565 Discussion

3575.1 Compare Evolution Changes of Major Ion Compositions
358of Salt Lakes Understudy

359In this work, we investigated the major Eurasian closed saline lakes that are mostly
360located in arid climatic zones (Fig. 1). Lake Urmia, the Aral, and the Dead Sea are
361hypersaline waters. The investigated lakes belong to the sulfate class, except the
362Dead Sea that belongs to the chloride class [31, 40]. Additionally, they show a trend
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363 of negative water balance and are subject to degradation mainly due to climate
364 change and partly due to human activities. Over the past 5 years, the level of the Aral
365 has dropped by 4 m. The Dead Sea level drops by 1 m per year [28]. Since the
366 mid-twentieth century, the surface level of the Dead Sea has dropped by about 21 m.
367 Lake Urmia experiences strong depression and for the last two decades, its level
368 dropped on average 21 cm per year [4]. Lake Issyk-Kul is the least susceptible to
369 degradation. But observations revealed a gradual level decrease, i.e., 5.5 cm per year,
370 for Issyk-Kul [31]. The decrease in the level of Lake Issyk-Kul is associated with
371 climatic, tectonic, seismic processes, as well as economic activities of the popula-
372 tion, mainly associated with irrigation.
373 Apart from hydrological and geomorphological features, climate change plays an
374 important role in determining the chemical compositions and their evolution in the
375 studied lakes. The ratio of the main ions of the studied lakes differs from the ratio of
376 ions in the ocean. The main ions ratio has changed significantly in the Aral Sea over
377 time. In Lake Urmia, the ratio is completely unstable due to massive levels of
378 depression and strong seasonal fluctuations. Fluctuations in the lake level are usually
379 controlled by the flow of continental and groundwater, which recently practically
380 does not reach the lake.
381 To clearly show how different the evolutionary processes of the brines of the
382 studied lakes are, we built graphs based on previously published data and our data.
383 Comparison of the data with historical previously published data makes it possible to
384 assess changes in salt composition in each lake. Figure 10 shows that the processes
385 of ion deposition in lakes are different. Unlike hypersaline lakes, the slightly saline
386 Lake Issyk-Kul demonstrates a relatively constant salt composition (Fig. 10),
387 although there is a slight tendency toward a decrease in the content of sulfate and
388 an increase in the content of bicarbonate ions in the surface layer of the lake.
389 Moreover, in contrast to the composition of the Aral Sea and Lake Urmia, in the
390 deep waters of Issyk-Kul, there are less sulfate and hydrocarbon than on the surface.

391 5.2 Comparative Analysis of the Present Chemical
392 Composition of the Lakes Understudy

393 Theoretical changes of the major salinity components can be illustrated with a plot
394 from [57] shown in Fig. 11. They studied the connection of the chemical composi-
395 tion varieties during basin evaporation. Two types of water, seawater and Na–HCO3

396 groundwater are analyzed to illustrate the effect of the leakage ratio on brine
397 evolution. The analysis suggests that brines evolve differently under different
398 leakage conditions, but there are some general features. Changes in solute concen-
399 trations as the result of mineral precipitation are apparent. Sharp changes in slope in
400 Fig. 11 occur in the curves of limiting elements (those elements whose supply is first
401 exhausted during the evolution of brine) when a mineral begins to precipitate.
402 Dolomite precipitation, which occurs from the beginning has little effect on
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403 magnesium concentration, as shown by the parallel nature of magnesium and
404 bromide curves through much of the graph. However, dolomite precipitation pre-
405 vents bicarbonate values from rising during evaporation. Gypsum precipitation
406 causes calcium (which is limiting) to decline at approx. 3 evaporation volumes but
407 has a little effect on sulfate. Halite precipitation at approximately 10 evaporation
408 volumes causes sodium to decline but has a relatively minor effect on chloride.
409 Precipitation of polychloride at approximately 38 evaporation volumes causes a
410 perceptible change in the potassium concentration but only a small change in the
411 sulfate concentration. Precipitation of more soluble magnesium sulfates and chlo-
412 rides causes a further reduction in sodium, sulfate, and potassium concentrations.
413 The brine reaches a pseudo-steady-state condition at about 180 evaporation volume
414 [57]. Changes in volume (and salinity) in Lake Urmia, the Dead Sea, and the Aral
415 Sea are illustrated in Fig. 11. We note that in all three basins there are quantitative
416 and qualitative changes in the major chemical composition leading to deposition of
417 different minerals during the water body evaporation, and these changes generally
418 correspond to the theoretical ones. Therefore, it is possible to predict the develop-
419 ment of the lake’s chemical composition.

Fig. 11 Theoretical variation in mineral assemblage and the chemistry of the major brine,
depending on the degree of openness of the system [57] and temporal changes for Lake Urmia,
the Dead Sea, and the Aral Sea
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4206 Conclusions

421The performed analysis of the changes in the chemical composition of the inland salt
422lakes demonstrated that to a higher degree the climate variation affects salt lakes.
423Changes in river discharges, precipitation, and evaporation lead to catastrophic
424consequences. In the Eurasian region, the Aral Sea, which does not exist as a single
425water body anymore, experienced such an extreme alteration. Later, Lake Urmia
426showed a similar trend by a period of drastic volume depression. It is necessary to
427emphasize that on top of climate factors, these two lakes were objected to severe
428anthropogenic influences, where a tremendous volume of inflow water was diverted
429from those lakes for irrigation of vast agricultural fields. Initial ecosystems were
430eliminated, and it destroyed ecosystem services, i.e., fishery in the Aral Sea, pro-
431duction of artemia in the Urmia Lake, and tourist business in both lakes. Particularly
432in the Aral region, the environmental alterations not only did reshape the landscape
433and natural balance of the region, but they also affected dramatically the populations
434that live or used to live in this area. Public health, access to drinkable water,
435migrations due to changing landscape, and consequences of vanishing wildlife are
436all matters that turn out to rely on stable climatic and hydrologic conditions. The
437socio-economical consequence for the people who are living in that region was huge
438and it is already triggered some migration waves [58]. The Dead Sea has a larger
439initial volume and is historically known for its level oscillations, but even here
440industry became a powerful factor influencing its water budget. Recently, this lake
441had a principal shift of geochemical regime when the lake turned from meromictic to
442holomictic. Deep lake Issyk-Kul was not affected by large changes in the river
443discharges (both to climatic and anthropogenic factors, because of a limited agricul-
444tural activity here) and still preserves its properties. But, the probable future scenario
445of mountain glaciers melting can have dramatic consequences even for the lakes
446positioned in the high mountains. In conclusion, it can be mentioned that the
447Eurasian lakes are sensitive and reacting to the changes in climate and anthropogenic
448factors.
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